Produit scalaire et norme

Définitions

Soient $\vec{v} = (v_1, \dots, v_n), \ \vec{w} = (w_1, \dots, w_n) \in \mathbb{R}^n$.

- Le **produit scalaire** de \vec{v} et \vec{w} est le nombre $\vec{v} \cdot \vec{w} \stackrel{\text{def}}{=} v_1 w_1 + \dots v_n w_n$.
- La **norme** de \vec{v} est le nombre $||\vec{v}|| \stackrel{\text{def}}{=} \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{v_1^2 + \cdots + v_n^2}$.
- La **distance** entre \vec{v} et \vec{w} est le nombre $d(\vec{v}, \vec{w}) \stackrel{\text{def}}{=} ||\vec{v} \vec{w}||$.

Propriétés

Soient $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ et $\alpha \in \mathbb{R}$.

- $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$

- $||\alpha \vec{\mathbf{v}}|| = |\alpha| ||\vec{\mathbf{v}}||$
- $\frac{1}{||\vec{v}||}\vec{v}$ est **unitaire** (de norme 1).

Orthogonalité

Définitions

Soient \vec{v} , $\vec{w} \in \mathbb{R}^n$ et $W \subset \mathbb{R}^n$ un s.e.v.

- \vec{v} est **orthogonal** \vec{a} \vec{w} si $\vec{v} \cdot \vec{w} = 0$. On note $\vec{v} \perp \vec{w}$.
- \vec{v} est **orthogonal** à W si \vec{v} est orthogonal à tout $\vec{w} \in W$.
- Le complément orthogonal de W est l'ensemble des vecteurs orthogonaux à W:

$$W^{\perp} \stackrel{\mathsf{def}}{=} \{ \vec{v} \in \mathbb{R}^n : \vec{v} \cdot \vec{w} = 0, \ \forall \vec{w} \in W \}.$$

Théorème

Soit $W \subset \mathbb{R}^n$ un s.e.v. Alors

- W^{\perp} est un s.e.v. de \mathbb{R}^n
- $W \cap W^{\perp} = \{\vec{0}\}\$

- $(W^{\perp})^{\perp} = W$
- \bullet dim(W) + dim (W^{\perp}) = n

Si $A \in M_{m \times n}$, alors $(\operatorname{Im}(A))^{\perp} = \operatorname{Ker}(A^{T})$. Pratique quand $W = \operatorname{Span}\{\vec{a}_{1}, \ldots, \vec{a}_{k}\} = \operatorname{Im}(A)$.

Projection orthogonale et bases orthogonales

Définitions

Soient $W \subset \mathbb{R}^n$ un s.e.v. et $\vec{v} \in \mathbb{R}^n \backslash W$. La **projection orthogonale de** \vec{v} **sur** W est le seul vecteur $\text{Proj}_W(\vec{v}) \in \mathbb{R}^n$ satisfaisant

$$\operatorname{Proj}_W(\vec{v}) \in W \quad \text{et} \quad \vec{v} - \operatorname{Proj}_W(\vec{v}) \in W^{\perp}.$$

Une famille ou base de vecteurs $\{\vec{v_1}, \dots, \vec{v_k}\} \subset \mathbb{R}^n$ est

- orthogonale si $\vec{v_i} \cdot \vec{v_i} = 0, \ \forall \ 1 \leqslant i \neq j \leqslant k$
- orthonormale si, de plus, $||\vec{v_i}|| = 1$, $\forall 1 \le i \le k$.

Théorème

Soient $W \subset \mathbb{R}^n$ un s.e.v. et $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$ une base **orthogonale** de W. Alors pour tout $\vec{v} \in \mathbb{R}^n$, on peut écrire

$$\operatorname{\mathsf{Proj}}_W(\vec{\mathsf{v}}) = \beta_1 \vec{b}_1 + \dots \beta_k \vec{b}_k, \quad \operatorname{\mathsf{avec}} \ \beta_i \stackrel{\mathsf{def}}{=} \ \frac{\vec{\mathsf{v}} \cdot \vec{b}_i}{||\vec{b}_i||^2}, \ \forall \ 1 \leqslant i \leqslant k.$$

Algorithme de Gram-Schmidt

Théorème

Soit une base $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$ d'un s.e.v $W \subset \mathbb{R}^n$. Alors on peut construire une base orthogonale $\mathcal{C} = \{\vec{c}_1, \dots, \vec{c}_k\}$ de W de la manière suivante :

•
$$\vec{c_1} \stackrel{\text{def}}{=} \vec{b_1}$$
, $W_1 \stackrel{\text{def}}{=} \operatorname{Span}\{\vec{c_1}\}$,

•
$$\vec{c}_2 \stackrel{\text{def}}{=} \vec{b}_2 - \text{Proj}_{W_1}(\vec{b}_2), \qquad W_2 \stackrel{\text{def}}{=} \text{Span}\{\vec{c}_1, \vec{c}_2\},$$

•
$$\vec{c}_3 \stackrel{\text{def}}{=} \vec{b}_3 - \text{Proj}_{W_2}(\vec{b}_3), \qquad W_3 \stackrel{\text{def}}{=} \text{Span}\{\vec{c}_1, \vec{c}_2, \vec{c}_3\},$$

•
$$\vec{c_i} \stackrel{\text{def}}{=} \vec{b_i} - \text{Proj}_{W_{i-1}}(\vec{b_i}), \qquad W_i \stackrel{\text{def}}{=} \text{Span}\{\vec{c_1}, \vec{c_2}, \dots, \vec{c_i}\},$$

•
$$\vec{c}_k \stackrel{\text{def}}{=} \vec{b}_k - \text{Proj}_{W_{k-1}}(\vec{b}_k).$$

La méthode des moindres carrés

Théorème

La projection orthogonale de \vec{v} sur W est le vecteur qui **minimise la distance entre** \vec{v} **et** W, c'est à dire

$$||\vec{v} - \mathsf{Proj}_{\mathcal{W}}(\vec{v})|| \leq ||\vec{v} - \vec{w}||, \ \forall \ \vec{w} \in \mathcal{W}.$$

Théorème

Si le système linéaire $A\vec{x}$ est incompatible, alors la solution $\hat{x} \in \mathbb{R}^n$ de l'équation normale

$$A^T A \hat{\mathbf{x}} = A^T \vec{b}$$

minimise la distance entre $A\vec{x}$ et \vec{b} , c'est à dire

$$||A\hat{x} - \vec{b}|| \leqslant ||A\vec{x} - \vec{b}||, \ \forall \ \vec{x} \in \mathbb{R}^n.$$

On appelle \hat{x} la solution au sens des moindres carrés de $A\vec{x} = \vec{b}$

Droite de régression

Définition

Soient un ensemble de points $(x_1, y_1), (x_2, y_2), \dots (x_k, y_k) \in \mathbb{R}^2$. La **droite de régression** de ces points est la droite y = mx + h qui les approche aux mieux.

On peut calculer $\hat{x} = (m, h)$ en cherchant la solution au sens des moindres carrés du système

$$\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_k & 1 \end{pmatrix} \hat{x} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_k \end{pmatrix}.$$